Công thức số phức

127

Công thức số phức: Phép cộng trừ nhân chia số phức, công thức số phức lượng giác…
Công thức số phức

Công thức cộng, trừ và nhân hai số phức

Cho hai số phức \({z_1} = a + bi,\,\,{z_2} = c + di\,(a,b,c,d \in \mathbb{R}),\) ta có:

\(z_1+z_2=(a + bi) + ( c + di) = (a + c) + (b + d)i\)
\(z_1-z_2=(a + bi) – ( c + di) = (a – c) + (b – d)i\)
\(z_1.z_2=(a + bi)( c + di) = (ac – bd) + (ad + bc)i\)

Nhận xét

Phép cộng và phép nhân số phức được thực hiện tương tự như đối với số thực, với chú ý \(i^2=-1.\)
Với mọi \(z,z’\in\mathbb{C}\):
\(z + \overline z = 2a\) (với \(z = a + bi\))
=  + ‘
\(z.\overline z = {\left| z \right|^2} = {\left| {\overline z } \right|^2}\)
\(\left| {z.z’} \right| = \left| z \right|.\left| {z’} \right|\)
\(\left| {z + z’} \right| \le \left| z \right| + \left| {z’} \right|\)

Phép chia hai số phức

Cho hai số phức \({z_1} = a + bi,\,\,{z_2} = c + di\,(a,b,c,d \in \mathbb{R}),\) ta có:

\(\frac{{c + di}}{{a + bi}} = \frac{{\left( {c + di} \right)(a – bi)}}{{{a^2} + {b^2}}} = \frac{{ac + bd}}{{{a^2} + {b^2}}} + \frac{{ad – bc}}{{{a^2} + {b^2}}}i\)

(Nhân cả tử và mẫu với \(a – bi\)(số phức liên hợp của mẫu)).

Chú ý
Với số phức \(z\ne0\) ta có:

Số phức nghịch đảo của \(z\): \({z^{ – 1}} = \frac{1}{{{{\left| z \right|}^2}}}\overline z .\)
Thương của \(z’\) chia cho \(z\): \(\frac{{z’}}{z} = z’.{z^{ – 1}} = \frac{{z’.\overline z }}{{{{\left| z \right|}^2}}} = \frac{{z’.\overline z }}{{z.\overline z }}.\)

Công thức số phức lượng giác

Để viết số phức $z = a + bi,(a,b \in R)$ dưới dạng lượng giác $z = r(c{\rm{os}}\varphi + i\sin \varphi )$, trước hết ta biến đổi: $z = \sqrt {{a^2} + {b^2}} (\frac{a}{{\sqrt {{a^2} + {b^2}} }} + \frac{b}{{\sqrt {{a^2} + {b^2}} }}i).$
Như vậy: $r = \sqrt {{a^2} + {b^2}}.$ Đặt $c{\rm{os}}\varphi = \frac{a}{{\sqrt {{a^2} + {b^2}} }}$ và $\sin \varphi = \frac{b}{{\sqrt {{a^2} + {b^2}} }}.$
Từ đó suy ra $\varphi $ là $1$ $acgumen$ của $z.$

Các công thức biến đổi lượng giác cần lưu ý

$1 + c{\rm{os}}\varphi + i\sin \varphi $ $ = 2{\cos ^2}\frac{\varphi }{2} + 2i\sin \frac{\varphi }{2}c{\rm{os}}\frac{\varphi }{2}$ $ = 2\cos \frac{\varphi }{2}\left[ {c{\rm{os}}\frac{\varphi }{2} + i \sin \frac{\varphi }{2}} \right].$
$1 + i\tan \varphi = 1 + i\frac{{\sin \varphi }}{{c{\rm{os}}\varphi }}$ $ = \frac{1}{{c{\rm{os}}\varphi }}(c{\rm{os}}\varphi + i \sin \varphi ).$

Ví dụ áp dụng công thức số phức

Ví dụ 1:
Cho số phức \(\frac{{\sqrt 3 }}{2} – \frac{1}{2}i.\) Tìm các số phức sau \(\overline z\); \(z^2\); \({\left( {\overline z } \right)^3}\); \(1+z+z^2.\)

Lời giải:
\(z = \frac{{\sqrt 3 }}{2} – \frac{1}{2}i \Rightarrow \overline z = \frac{{\sqrt 3 }}{2} + \frac{1}{2}i\)
\({z^2} = {\left( {\frac{{\sqrt 3 }}{2} – \frac{1}{2}i} \right)^2} = \frac{3}{4} + \frac{1}{4}{i^2} – \frac{{\sqrt 3 }}{2}i = \frac{1}{2} – \frac{{\sqrt 3 }}{2}i\)
\(\Rightarrow {\left( {\overline z } \right)^2} = {\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right)^2} = \frac{3}{4} + \frac{1}{4}{i^2} + \frac{{\sqrt 3 }}{2}i = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\)

\({\left( {\overline z } \right)^3} = {\left( {\overline z } \right)^2}.\overline z = \left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right) = \frac{{\sqrt 3 }}{4} + \frac{1}{2}i + \frac{3}{4}i – \frac{{\sqrt 3 }}{4} = i\)
\(1 + z + {z^2} = 1 + \frac{{\sqrt 3 }}{2} – \frac{1}{2}i + \frac{1}{2} – \frac{{\sqrt 3 }}{2}i = \frac{{3 + \sqrt 3 }}{2} – \frac{{1 + \sqrt 3 }}{2}i\)

Ví dụ 2:
Tìm phần thực, phần ảo và tính mô đun của số phức \(z\) biết: \(\overline z = {\left( {\sqrt 2 + i} \right)^2}\left( {1 – i\sqrt 2 } \right).\)

Lời giải:
Ta có:

\(\begin{array}{l} \overline z = {\left( {\sqrt 2 + i} \right)^2}\left( {1 – i\sqrt 2 } \right) = \left( {2 + {i^2} + 2i\sqrt 2 } \right)\left( {1 – i\sqrt 2 } \right) = 5 + i\sqrt 2 \\ \Rightarrow z = 5 – i\sqrt 2 \end{array}\)

Vậy z có phần thực bằng 5; phần ảo bằng \(-\sqrt2\).

Môđun: \(\left| z \right| = \sqrt {{5^2} + {{\left( { – \sqrt 2 } \right)}^2}} = 3\sqrt 3 .\)

Ví dụ 3:
Tìm số phức \(z\) biết \((2z – i)(1 + i) + (\overline z + 1)(1 – i) = 2 – 2i.\)

Lời giải:
Cho \(z=a+bi (a,b\in\mathbb{R})\) suy ra \(\overline z = a – bi,\) từ giải thiết bài toán ta có:

\((2a + 2bi – 1)(1 + i) + (a – bi + 1)(1 – i) = 2 – 2i\)

\(\Leftrightarrow 3a – 3b + (a + b – 2)i = 2 – 2i\)

\(\Leftrightarrow \left\{ \begin{array}{l} 3a – 3b = 2\\ a + b – 2 = – 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{3}\\ b = \frac{{ – 1}}{3} \end{array} \right.\)

Vậy \(z=\frac{1}{3}-\frac{1}{3}i.\)

Ví dụ 4:
Tìm tập hợp các điểm biểu diễn số phức z thỏa \(\left| {z – 1 + i} \right|=2.\)

Lời giải:
Đặt \(z=x+yi (x,y\in\mathbb{R})\) ta có: \(z – 1 + i = (x – 1) + (y + 1)i\)

\(\left| {z – 1 + i} \right|=2\) suy ra: \(\sqrt {{{(x – 1)}^2} + {{(y + 1)}^2}} = 2 \Leftrightarrow {(x – 1)^2} + {(y + 1)^2} = 4\)

Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(1;-1), bán kính R=2.

Ví dụ 5:
Tìm số phức liên hợp của số phức: \(z = (1 + i)(3 – 2i) + \frac{1}{{3 + i}}\).

Lời giải:
Ta có: \(z = 5 + i + \frac{{3 – i}}{{(3 + i)(3 – i)}} = 5 + i + \frac{{3 – i}}{{10}}=\frac{53}{10}+\frac{9}{10}i\)

Suy ra số phức liên hợp của số phức z là: \(\overline z = \frac{{53}}{{10}} – \frac{9}{{10}}i\).

Ví dụ 6:
Tìm môđun của số phức \(z = \frac{{(1 + i)(2 – i)}}{{1 + 2i}}\).

Lời giải:
Ta có:\(z = \frac{{(1 + i)(2 – i)}}{{1 + 2i}} = \frac{{3 + i}}{{1 + 2i}} = \frac{{\left( {3 + i} \right)\left( {1 – 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 – 2i} \right)}} = \frac{{5 + i}}{5} = 1 + \frac{1}{5}i.\)

Vậy môđun của số phức z là: \(\left| z \right| = \sqrt {1 + {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{\sqrt {26} }}{5}\).

Ví dụ 7:
Tìm phần thực, phần ảo và tính môđun của số phức z thỏa: \({\left( {1 + i} \right)^2}\left( {2 – i} \right)z = 8 + i + \left( {1 + 2i} \right)z.\)

Lời giải:
\({\left( {1 + i} \right)^2}\left( {2 – i} \right)z = 8 + i + \left( {1 + 2i} \right)z\)

\(\Leftrightarrow z = \frac{{8 + i}}{{1 + 2i}} = \frac{{\left( {8 + i} \right)\left( {1 – 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 – 2i} \right)}} = \frac{{10 – 15i}}{5} = 2 – 3i.\)

Vậy z có phần thực bằng 2, phần ảo bằng -3, môđun \(\left| z \right| = \sqrt {{2^2} + {{\left( { – 3} \right)}^2}} = \sqrt {13} .\)

Ví dụ 8:
Tìm số phức z thỏa: \(\frac{{(\overline z – 1).(2 – i)}}{{\overline z + 2i}} = \frac{{3 + i}}{2}\)

Lời giải:
Điều kiện: \(\overline z \ne -2i\) hay \(z\ne 2i\)

Khi đó:  \(\frac{{(\overline z – 1).(2 – i)}}{{\overline z + 2i}} = \frac{{3 + i}}{2}\)\(\Leftrightarrow 2(\overline z – 1)(2 – i) = (3 + i)(\overline z + 2i)\)

\(\Leftrightarrow (\overline z – 1)(4 – 2i) = 3\overline z + 6i + iz + 2{i^2}\)

\(\Leftrightarrow (1 – 3i)\overline z = 2i + 4\)

\(\Leftrightarrow \overline z = \frac{{2i + 4}}{{1 – 3i}} = \frac{{(2i + 4)(1 + 3i)}}{{10}} = \frac{{ – 1}}{5} + \frac{7}{5}i\)

\(\Rightarrow z = \frac{{ – 1}}{5} – \frac{7}{5}i\).

Ví dụ 9:
Tính số phức sau: \(z={\left( {\frac{{1 + i}}{{1 – i}}} \right)^{16}} + {\left( {\frac{{1 – i}}{{1 + i}}} \right)^8}.\)

Lời giải:
Ta có:  \(\frac{{1 + i}}{{1 – i}} = \frac{{(1 + i)(1 + i)}}{2} = \frac{{2i}}{2} = i\)\(\Rightarrow \frac{{1 – i}}{{1 + i}} = \frac{1}{i} = – i.\)

Vậy: \({\left( {\frac{{1 + i}}{{1 – i}}} \right)^{16}} + {\left( {\frac{{1 – i}}{{1 + i}}} \right)^8} = {i^{16}} + {( – i)^8} = {({i^2})^8} + {\left( {{{\left( { – i} \right)}^2}} \right)^4} = 1 + 1 = 2.\)

Ví dụ 10: Viết các số phức sau dưới dạng lượng giác:
a. $5$.
b. $-3$.
c. $7i$.
d. $-2i$.

a. $5 = 5\left( {1 + 0i} \right) = 5\left( {\cos 0 + i\sin 0} \right).$
b. $ – 3 = 3\left( { – 1 + 0i} \right) = 3\left( {{\rm{cos}}\pi {\rm{ + sin}}\pi {\rm{i}}} \right).$
c. $7i = 7\left( {0 + i} \right) = 7\left( {\cos \frac{\pi }{2} + i\sin \frac{\pi }{2}} \right).$
d. $ – 2i = 2\left( {0 – i} \right)$ $ = 2\left( {\cos \left( { – \frac{\pi }{2}} \right) + i\sin \left( { – \frac{\pi }{2}} \right)} \right).$

Ví dụ 11: Viết các số phức sau dưới dạng lượng giác:
a. $1 – i\sqrt 3.$
b. $\sqrt 3 – i\sqrt 3 .$
c. $\frac{1}{3} + \frac{{\sqrt 3 }}{3}i.$
d. $\frac{{7\sqrt 3 }}{3} – 7i.$

a. $1 – i\sqrt 3 = 2\left( {\frac{1}{2} – i\frac{{\sqrt 3 }}{2}} \right)$ $ = 2\left[ {\cos \left( { – \frac{\pi }{3}} \right) + i\sin \left( { – \frac{\pi }{3}} \right)} \right].$
b. $\sqrt 3 – i\sqrt 3 = \sqrt 3 \left( {1 – i} \right)$ $ = \sqrt 6 \left( {\frac{1}{{\sqrt 2 }} – \frac{i}{{\sqrt 2 }}} \right)$ $ = \sqrt 6 \left[ {\cos \left( { – \frac{\pi }{4}} \right) + i\sin \left( { – \frac{\pi }{4}} \right)} \right].$
c. $\frac{1}{3} + \frac{{\sqrt 3 }}{3}i = \frac{2}{3}\left( {\frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right)$ $ = \frac{2}{3}\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right).$
d. $\frac{{7\sqrt 3 }}{3} – 7i = \frac{{7\sqrt 3 }}{3}\left( {1 – i\sqrt 3 } \right)$ $ = \frac{{14\sqrt 3 }}{3}\left( {\frac{1}{2} – i\frac{{\sqrt 3 }}{2}} \right)$ $ = \frac{{14\sqrt 3 }}{3}\left[ {\cos \left( { – \frac{\pi }{3}} \right) + i\sin \left( { – \frac{\pi }{3}} \right)} \right].$

Ví dụ 12: Viết các số phức sau dưới dạng lượng giác:
a. $\left( {1 + 3i} \right)\left( {1 + 2i} \right).$
b. $\left( {1 + i} \right)\left[ {1 + \left( {\sqrt 3 – 2} \right)i} \right].$
c. $\left( {\sqrt 2 – 2i} \right).\left[ {\sqrt 2 + \left( {3\sqrt 2 – 4} \right)i} \right].$

a. $\left( {1 + 3i} \right)\left( {1 + 2i} \right)$ $ = 1 + 6{i^2} + 3i + 2i$ $ = – 5 + 5i = 5\left( { – 1 + i} \right)$
$ = 5\sqrt 2 \left( { – \frac{1}{{\sqrt 2 }} + i\frac{1}{{\sqrt 2 }}} \right)$ $ = 5\sqrt 2 \left( {\cos \frac{{3\pi }}{4} + i\sin \frac{{3\pi }}{4}} \right).$
b. $\left( {1 + i} \right)\left[ {1 + \left( {\sqrt 3 – 2} \right)i} \right]$ $ = 1 – \left( {\sqrt 3 – 2} \right) + \left( {\sqrt 3 – 2 + 1} \right)i$
$ = 3 – \sqrt 3 + \left( {\sqrt 3 – 1} \right)i$ $ = \sqrt 3 \left( {\sqrt 3 – 1} \right) + \left( {\sqrt 3 – 1} \right)i$
$ = \left( {\sqrt 3 – 1} \right)\left( {\sqrt 3 + i} \right)$ $ = 2\left( {\sqrt 3 – 1} \right)\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right)$ $ = 2\left( {\sqrt 3 – 2} \right)\left( {\cos \frac{\pi }{6} + i\sin \frac{\pi }{6}} \right).$
c. $\left( {\sqrt 2 – 2i} \right).\left[ {\sqrt 2 + \left( {3\sqrt 2 – 4} \right)i} \right]$ $ = \left( {2 + 6\sqrt 2 – 8} \right) + \left( {6 – 4\sqrt 2 – 2\sqrt 2 } \right)i$
$ = \left( {6\sqrt 2 – 6} \right) + \left( {6 – 6\sqrt 2 } \right)i$ $ = \left( {6\sqrt 2 – 6} \right)\left( {1 – i} \right)$
$ = \sqrt 2 \left( {6\sqrt 2 – 6} \right)\left( {\frac{1}{{\sqrt 2 }} – \frac{1}{{\sqrt 2 }}i} \right)$ $ = \left( {12 – 6\sqrt 2 } \right)\left[ {\cos \left( { – \frac{\pi }{4}} \right) + i\sin \left( { – \frac{\pi }{4}} \right)} \right].$

Ví dụ 13: Viết các số phức sau dưới dạng lượng giác:
a. $\frac{1}{{2 + 2i}}.$
b. $\frac{{3 – i}}{{1 – 2i}}.$
c. $\frac{{1 – i\sqrt 3 }}{{1 + i}}.$

a. Ta có:
$\frac{1}{{2 + 2i}} = \frac{1}{{2\left( {1 + i} \right)}}$ $ = \frac{{\sqrt 2 }}{{4\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)}}$ $ = \frac{{\sqrt 2 }}{4}\left[ {\cos \left( { – \frac{\pi }{4}} \right) + i\sin \left( { – \frac{\pi }{4}} \right)} \right].$
b. $\frac{{3 – i}}{{1 – 2i}} = \frac{{\left( {3 – i} \right)\left( {1 + 2i} \right)}}{{\left( {1 – 2i} \right)\left( {1 + 2i} \right)}}$ $ = \frac{{3 + 2 + 6i – i}}{{1 – {{\left( {2i} \right)}^2}}} = \frac{{5 + 5i}}{{1 + 4}}$ $ = 1 + i$
$ = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}i} \right)$ $ = \sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right).$
c. $\frac{{1 – i\sqrt 3 }}{{1 + i}}$ $ = \frac{2}{{\sqrt 2 }}\left[ {\cos \left( { – \frac{\pi }{3} – \frac{\pi }{4}} \right) + i\sin \left( { – \frac{\pi }{3} – \frac{\pi }{4}} \right)} \right]$ $ = \sqrt 2 \left[ {\cos \left( {\frac{{ – 7\pi }}{{12}}} \right) + i\sin \left( {\frac{{ – 7\pi }}{{12}}} \right)} \right].$

Ví dụ 14: Viết các số phức sau dưới dạng lượng giác:
a. $1 + \frac{i}{{\sqrt 3 }}.$
b. $1 + \sqrt 3 + \left( {1 – \sqrt 3 } \right)i.$

a. Ta có:
$1 + \frac{i}{{\sqrt 3 }} = 1 + i\tan \frac{\pi }{6}$ $ = 1 + i\frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{6}}}$ $ = \frac{1}{{\cos \frac{\pi }{6}}}\left( {\cos \frac{\pi }{6} + i\sin \frac{\pi }{6}} \right)$ $ = \frac{2}{{\sqrt 3 }}\left( {\cos \frac{\pi }{6} + i\sin \frac{\pi }{6}} \right).$
b. $1 + \sqrt 3 + \left( {1 – \sqrt 3 } \right)i$ $ = 1 + \tan \frac{\pi }{3} + \left( {1 – \tan \frac{\pi }{3}} \right)i$ $ = 1 + \frac{{\sin \frac{\pi }{3}}}{{\cos \frac{\pi }{3}}} + \left( {1 – \frac{{\sin \frac{\pi }{3}}}{{\cos \frac{\pi }{3}}}} \right)i$
$ = \frac{1}{{\cos \frac{\pi }{3}}}\left( {\cos \frac{\pi }{3} + \sin \frac{\pi }{3}} \right)$ $ + \frac{1}{{\cos \frac{\pi }{3}}}\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right)i$ $ = \frac{1}{{\cos \frac{\pi }{3}}}\left( {\cos \frac{\pi }{3} + \sin \frac{\pi }{3}} \right)$ $ – \frac{1}{{\cos \frac{\pi }{3}}}\left( {\sin \frac{\pi }{3} – \cos \frac{\pi }{3}} \right)i$
$ = \frac{1}{{\cos \frac{\pi }{3}}}\sqrt 2 \cos \left( {\frac{\pi }{3} – \frac{\pi }{4}} \right)$ $ – \frac{1}{{\cos \frac{\pi }{3}}}\sqrt 2 \sin \left( {\frac{\pi }{3} – \frac{\pi }{4}} \right).i$
$ = 2\sqrt 2 \left( {\cos \frac{\pi }{{12}} – i\sin \frac{\pi }{{12}}} \right)$ $ = 2\sqrt 2 \left[ {\cos \left( { – \frac{\pi }{{12}}} \right) + i\sin \left( { – \frac{\pi }{{12}}} \right)} \right].$
Cách khác:
$1 + \sqrt 3 + \left( {1 – \sqrt 3 } \right)i$ $ = \left( {1 + \sqrt 3 } \right)\left( {1 + \frac{{1 – \sqrt 3 }}{{1 + \sqrt 3 }}i} \right)$ $ = \left( {1 + \sqrt 3 } \right)\left( {1 + \frac{{\tan \frac{\pi }{4} – \tan \frac{\pi }{3}}}{{1 + \tan \frac{\pi }{4}.\tan \frac{\pi }{3}}}i} \right)$
$ = \left( {1 + \sqrt 3 } \right)\left[ {1 + i\tan \left( {\frac{\pi }{4} – \frac{\pi }{3}} \right)} \right]$ $ = \left( {1 + \sqrt 3 } \right)\left[ {1 + i\tan \left( { – \frac{\pi }{{12}}} \right)} \right]$
$ = \left( {1 + \sqrt 3 } \right)\left[ {1 + i\frac{{\sin \left( { – \frac{\pi }{{12}}} \right)}}{{\cos \left( { – \frac{\pi }{{12}}} \right)}}} \right]$ $ = \frac{{1 + \sqrt 3 }}{{\cos \frac{\pi }{{12}}}}\left[ {\cos \left( { – \frac{\pi }{{12}}} \right) + i\sin \left( { – \frac{\pi }{{12}}} \right)} \right].$
Mà $\cos \frac{\pi }{{12}} = \cos \left( {\frac{\pi }{3} – \frac{\pi }{4}} \right)$ $ = \cos \frac{\pi }{3}.\cos \frac{\pi }{4} + \sin \frac{\pi }{3}.\sin \frac{\pi }{4}$ $ = \frac{1}{{2\sqrt 2 }} + \frac{{\sqrt 3 }}{{2\sqrt 2 }} = \frac{{1 + \sqrt 3 }}{{2\sqrt 2 }}.$
Do đó: $1 + \sqrt 3 + \left( {1 – \sqrt 3 } \right).i$ $ = \frac{{1 + \sqrt 3 }}{{\cos \frac{\pi }{{12}}}}\left[ {\cos \left( { – \frac{\pi }{{12}}} \right) + i\sin \left( { – \frac{\pi }{{12}}} \right)} \right]$ $ = 2\sqrt 2 \left[ {\cos \left( { – \frac{\pi }{{12}}} \right) + i\sin \left( { – \frac{\pi }{{12}}} \right)} \right].$

Công thức số phức
5 (100%) 1 vote

BÌNH LUẬN

Please enter your comment!
Please enter your name here