Công thức tích phân

182

Công thức tích phân: Công thức tích phân cơ bản, công thức tích phân từng phần, tính chất của tích phân, ứng dụng của tích phân…
Công thức tích phân

Định nghĩa tích phân

Cho hàm \(f(x)\) liên tục trên khoảng K và a, b là hai số bất kỳ thuộc K. Nếu \(F(x)\) là một nguyên hàm của \(f(x)\) thì hiệu số \(F(b)-F(a)\) được gọi là tích phân của \(f(x)\) từ a đến b và ký hiệu là \(\int\limits_a^b {f(x)dx} .\)

Tính chất của tích phân – Công thức tích phân

Cho các hàm số \(f(x),\,g(x)\) liên tục trên K và \(a,b,c\) là ba số thuộc K.

\(\,\int\limits_a^a {f(x)dx = 0}\)
\(\int\limits_a^b {f(x)dx = – \int\limits_b^a {f(x)dx} }\)
\(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} }\)
\(\int\limits_a^b {k.f(x)dx = k\int\limits_a^b {f(x)dx} }\)
\(\int\limits_a^b {[f(x) \pm g(x)]dx = \int\limits_a^b {f(x)dx} \pm \int\limits_a^b {g(x)dx} }\)

Một số phương pháp tính tích phân

Phương pháp đổi biến số

Công thức đổi biến số \(\int\limits_a^b {f[u(x)]u'(x)dx = \int\limits_{u(a)}^{u(b)} {f(u)du} }.\) Trong đó \(f(x)\) là hàm số liên tục và \(u(x)\) có đạo hàm liên tục trên khoảng J sao cho hàm hợp \(f[u(x)]\) xác định trên J; \(a,\,b \in J.\)

Các phương pháp đổi biến số thường gặp:

Cách 1: Đặt \(u = u(x)\) (\(u\) là một hàm theo \(x\)).
Cách 2: Đặt \(x=x(t)\) (\(x\) là một hàm theo \(t\)).

Phương pháp tích phân từng phần

Định lí:

Nếu \(u(x),\,v(x)\) là hai hàm số có đạo hàm liên tục trên khoảng K và \(a,b\) là hai số thuộc K thì \(\int\limits_a^b {u(x)v'(x)dx} = \left. {u(x)v(x)} \right|_a^b – \int\limits_a^b {v(x)u'(x)dx}.\)

Bài tập minh họa áp dụng công thức tích phân

Ví dụ 1:
Áp dụng công thức tính tích phân cơ bản, tính các tích phân sau:

a)  \(I = \int\limits_1^2 {\frac{{{x^2} – 2x}}{{{x^3}}}dx}\)

b)  \(I = \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}xdx}\)

Lời giải:
a) \(I = \int\limits_1^2 {\frac{{{x^2} – 2x}}{{{x^3}}}dx} = \int\limits_1^2 {\left( {\frac{1}{x} – \frac{2}{{{x^2}}}} \right)dx} = \left. {\left( {\ln \left| x \right| + \frac{2}{x}} \right)} \right|_1^2\)

\(= \left( {\ln 2 + 1} \right) – \left( {\ln 1 + 2} \right) = – 1 + \ln 2\)

b) \(I = \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}xdx = } \int\limits_0^{\frac{\pi }{4}} {(1 + \cos 2x)dx = } \left. {\frac{1}{2}(x + \frac{1}{2}sin2x)} \right|_0^{\frac{\pi }{4}} = \frac{{\pi + 2}}{8}\)

Ví dụ 2:
Áp dụng phương pháp đổi biến số, tính các tích phân sau:

a) \(\int\limits_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}} dx\)

b) \(I = \int\limits_0^2 {{x^3}\sqrt {{x^2} + 1} dx}\)

c) \(I = \int\limits_0^1 {\frac{{dx}}{{\sqrt {4 – {x^2}} }}}\)

Lời giải:
a) Đặt: \(t = \sqrt {1 + x} \Rightarrow {t^2} = 1 + x \Rightarrow 2tdt = dx\)

Đổi cận \(x = 0 \Rightarrow t = 1;x = 3 \Rightarrow t = 2\)

\(\begin{array}{l} \int\limits_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}dx = \int\limits_1^2 {\frac{{{t^2} – 1}}{{t + 1}}} } 2tdt = \int\limits_1^2 {2t(t – 1)dt} \\ = \left. {\left( {\frac{2}{3}{t^3} – {t^2}} \right)} \right|_1^2 = \frac{5}{3} \end{array}\)

b) Đặt: \(t = \sqrt {{x^2} + 1} \Rightarrow \left\{ {\begin{array}{*{20}{c}} {{x^2} = {t^2} – 1}\\ {xdx = tdt} \end{array}} \right.\)

Đổi cận: \(\left\{ {\begin{array}{*{20}{c}} {x = 0}\\ {x = 2} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {t = 1}\\ {t = \sqrt 5 } \end{array}} \right.\)

Vậy: \(I = \int\limits_1^{\sqrt 5 } {\left( {{t^2} – 1} \right)t.tdt} = \left( {\frac{{{t^5}}}{5} – \frac{{{t^3}}}{3}} \right)\left| {\begin{array}{*{20}{c}} {\sqrt 5 }\\ 1 \end{array} = \frac{2}{{15}} + \frac{{10\sqrt 5 }}{3}} \right.\)

c) Đặt \(x = 2\sin t\) với \(t \in \left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right] \Rightarrow dx = 2\cos tdt\)

Đổi cận: \(x = 0 \Rightarrow t = 0;x = 1 \Rightarrow t = \frac{\pi }{6}\)

Vậy: \(\int\limits_0^1 {\frac{{dx}}{{\sqrt {4 – {x^2}} }} = \int\limits_0^{\frac{\pi }{6}} {\frac{{2\cos tdt}}{{\sqrt {4 – 4{{\sin }^2}t} }} = } } \int\limits_0^{\frac{\pi }{6}} {\frac{{2\cos tdt}}{{2\cos t}} = } \int\limits_0^{\frac{\pi }{6}} {dt} = t\left| {\begin{array}{*{20}{c}} {\frac{\pi }{6}}\\ 0 \end{array}} \right. = \frac{\pi }{6}\)

Ví dụ 3:
Vận dụng phương pháp tính tích phân từng phân, tính các tích phân sau:

a) \(I = \int\limits_0^1 {x.{e^{2x}}dx}\)

b) \(I = \int\limits_1^2 {({x^2} – 1)\ln xdx}\)

Lời giải:
a) Đặt: \(\left\{ {\begin{array}{*{20}{c}} {u = x}\\ {dv = {e^{2x}}dx} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {du = dx}\\ {v = \frac{{{e^{2x}}}}{2}} \end{array}} \right.\)

\(I = \left. {\frac{{x{e^{2x}}}}{2}} \right|_0^1 – \int\limits_0^1 {\frac{{{e^{2x}}}}{2}dx} = \left. {\frac{{{e^2}}}{2} – \frac{{{e^{2x}}}}{4}} \right|_0^1 = \frac{{{e^2} + 1}}{4}\).

b) Đặt: \(\left\{ {\begin{array}{*{20}{c}} {u = \ln x}\\ {dv = \left( {{x^2} – 1} \right)dx} \end{array} \Rightarrow \left\{ {\begin{array}{*{20}{c}} {du = \frac{{dx}}{x}}\\ {v = \frac{{{x^3} – 3x}}{3}} \end{array}} \right.} \right.\)

\(I = \left. {\frac{{\left( {{x^3} – 3x} \right)\ln x}}{3}} \right|_1^2 – \int\limits_1^2 {\frac{{{x^2} – 3}}{3}} dx = \frac{{2\ln 2}}{3} – \left. {\left( {\frac{{{x^3}}}{9} – x} \right)} \right|_1^2\)\(= \frac{{2\ln 2}}{3} + \frac{2}{9}\).

Công thức tích phân
5 (100%) 1 vote

BÌNH LUẬN

Please enter your comment!
Please enter your name here