Khoảng cách từ điểm đến mặt phẳng

172

Bài viết khoảng cách từ điểm đến mặt phẳng bao gồm: khoảng cách từ 1 điểm đến 1 mặt phẳng, tính khoảng cách từ điểm đến mặt phẳng, khoảng cách từ điểm đến mặt phẳng oxyz, công thức khoảng cách từ điểm đến mặt phẳng…

Định nghĩa hhoảng cách từ điểm đến mặt phẳng

Khoảng cách từ 1 điểm M đến một mặt phẳng (P) (hoặc đến đường thẳng ∆) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên mặt phẳng (P) (h.a), kí hiệu là d(M, (P)) (hoặc trên đường thẳng ∆, kí hiệu là d(M, ∆) (h.b)).

Khoảng cách từ điểm đến mặt phẳng

Công thức hhoảng cách từ điểm đến mặt phẳng

Cho điểm M(a, b, c) và mặt phẳng (P): Ax + By + Cz + D = 0.

Khi đó khoảng cách từ điểm M tới (P) được xác định như sau:

\(d(A, (P)) = \frac{\left | Aa + Bb + Cc + D \right |}{\sqrt{A^{2} + B^{2} + C^{2}}}\)

Phương pháp xác định khoảng cách từ điểm đến mặt phẳng

Để xác định khoảng cách từ điểm $M$ đến mặt phẳng $(P)$, ta sử dụng các phương pháp sau đây:

Phương pháp 1
+ Tìm mặt phẳng $(Q)$ chứa $M$ và vuông góc với mặt phẳng $(P)$ theo giao tuyến $∆.$
+ Từ $M$ hạ $MH$ vuông góc với $∆$ ($H ∈ Δ$).
+ Khi đó $d(M,(P)) = MH.$

Khoảng cách từ điểm đến mặt phẳng

Ví dụ 1: Cho hình chóp đều $S.ABC$, đáy $ABC$ có cạnh bằng $a$, mặt bên tạo với đáy một góc $α$. Tính $d(A,(SBC))$ theo $a$ và $α.$

Khoảng cách từ điểm đến mặt phẳng

Gọi $I$ là trung điểm của $BC.$
+ Ta có: $\left. \begin{array}{l}
SI \bot BC\\
AI \bot BC
\end{array} \right\} \Rightarrow BC \bot (SAI)$ và $\widehat {SIA} = \alpha .$
+ Kẻ $AH \bot SI{\rm{ (H}} \in {\rm{SI)}}$ mà $SI = (SAI) \cap (SBC)$ nên $AH \bot (SBC)$. Do đó, $d(A,(SBC)) = AH.$
+ Mặt khác, xét tam giác vuông $AHI$ có: $AH = AI.\sin \alpha = \frac{{a\sqrt 3 }}{2}.\sin \alpha .$
Vậy: $d(A,(SBC)) = AH = \frac{{a\sqrt 3 }}{2}.\sin \alpha .$

Ví dụ 2: Cho hình chóp $S.ABCD$ đáy $ABCD$ là hình vuông cạnh $a$, $SA \bot (ABCD)$, $SA=2a.$
a) Tính $d(A,(SBC))$.
b) Tính $d(A,(SBD))$.

Khoảng cách từ điểm đến mặt phẳng

a) Kẻ $AH \bot SB{\rm{ (H}} \in {\rm{SB) (1)}}.$
Ta có: $SA \bot (ABCD) \Rightarrow SA \bot BC{\rm{ (*)}}$ và $AB \bot BC{\rm{ (gt) (**)}}$. Từ $(*)$ và $(**)$ suy ra: $BC \bot (SAB) \Rightarrow {\rm{BC}} \bot {\rm{AH (2)}}.$
Từ $(1)$ và $(2)$ ta có: $AH \bot (SBC)$ hay $d(A,(SBC)) = AH.$
+ Mặt khác, xét tam giác vuông $SAB$ có: $\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{4{a^2}}}$ $ \Rightarrow AH = \frac{{2a}}{{\sqrt 5 }}.$
Vậy $d(A,(SBC)) = \frac{{2a}}{{\sqrt 5 }}.$
b) Gọi $O = AC \cap BD.$
Kẻ $AK \bot SB{\rm{ (K}} \in {\rm{SO) (1)}}.$
Ta có: $SA \bot (ABCD) \Rightarrow SA \bot BD{\rm{ (*)}}$ và $AC \bot BD{\rm{ (gt) (**)}}$. Từ $(*)$ và $(**)$ suy ra: $BD \bot (SAC) \Rightarrow {\rm{BC}} \bot {\rm{AK (2)}}.$
Từ $(1)$ và $(2)$ ta có: $AK \bot (SBD)$ hay $d(A,(SBD)) = AK.$
+ Mặt khác, xét tam giác vuông $SAO$ có: $\frac{1}{{A{K^2}}} = \frac{1}{{A{O^2}}} + \frac{1}{{S{A^2}}} = \frac{9}{{4{a^2}}}$ $ \Rightarrow AK = \frac{{2a}}{3}.$
Vậy $d(A,(SBD)) = \frac{{2a}}{3}.$

Ví dụ 3: Cho hình chóp $S.ABCD$ đáy $ABCD$ là hình vuông cạnh $a$, tam giác $SAB$ đều, $(SAB) \bot (ABCD)$. Gọi $I, F$ lần lượt là trung điểm của $AB$ và $AD$. Tính $d(I,(SFC)).$

Khoảng cách từ điểm đến mặt phẳng

Gọi $K = FC \cap ID.$
+ Kẻ $IH \bot SK{\rm{ (H}} \in {\rm{K) (1)}}.$
+ Ta có:
$\left. \begin{array}{l}
(SAB) \bot (ABCD)\\
(SAB) \cap (ABCD) = AB\\
SI \subset (SAB)\\
SI \bot AB
\end{array} \right\}$ $ \Rightarrow SI \bot (ABCD).$
$ \Rightarrow SI \bot FC{\rm{ (*)}}.$
+ Mặt khác, xét hai tam giác vuông $AID$ và $DFC$ có: $AI = DF$, $AD = DC.$
Suy ra $\Delta AID = \Delta DFC$ $ \Rightarrow \widehat {AID} = \widehat {DFC},\widehat {ADI} = \widehat {DCF}.$
Mà $\widehat {AID} + \widehat {ADI} = {90^0}$ $ \Rightarrow \widehat {DFC} + \widehat {ADI} = {90^0}.$
Hay $FC \bot ID$ $(**).$
+ Từ $(*)$ và $(**)$ ta có: $FC \bot (SID) \Rightarrow IH \bot FC$ $(2)$. Từ $(1)$ và $(2)$ suy ra: $IH \bot (SFC)$ hay $d(I,(SFC)) = IH.$
+ Ta có:
$SI = \frac{{a\sqrt 3 }}{2},ID = \frac{{a\sqrt 5 }}{2},$ $\frac{1}{{D{K^2}}} = \frac{1}{{D{C^2}}} + \frac{1}{{D{F^2}}} = \frac{5}{{{a^2}}}$ $ \Rightarrow DK = \frac{{a\sqrt 5 }}{5}$ $ \Rightarrow IK = ID – DK = \frac{{3a\sqrt 5 }}{{10}}.$
Do đó $\frac{1}{{I{H^2}}} = \frac{1}{{S{I^2}}} + \frac{1}{{I{K^2}}} = \frac{{32}}{{9{a^2}}}$ $ \Rightarrow IH = \frac{{3a\sqrt 2 }}{8}.$
Vậy $d(I,(SFC)) = \frac{{3a\sqrt 2 }}{8}.$

Phương pháp 2
+ Qua $M$, kẻ $∆ // (P)$. Ta có: $d(M,(P)) = d(∆,(P)).$
+ Chọn $N \in \Delta $. Lúc đó ${\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right) = {\rm{d}}(\Delta ,{\rm{(P)) = d}}\left( {N,\left( {\rm{P}} \right)} \right)$.

Khoảng cách từ điểm đến mặt phẳng

Ví dụ 4: Cho lăng trụ $ABCD.A’B’C’D’$, $ABCD$ là hình chữ nhật, $AB = a,AD = a\sqrt 3$. Hình chiếu vuông góc của $A’$ trên $(ABCD)$ trùng với giao điểm của $AC$ và $BD$. Tính $d(B’,(A’BD)).$

Khoảng cách từ điểm đến mặt phẳng

+ Gọi $O$ là giao điểm của $AC$ và $BD.$ Vì $B’C//A’D$ nên $B’C//(A’BD)$. Do đó: $d(B’,(A’BD)) = d(B’C,(A’BD))$ $ = d(C,(A’BD)).$
+ Trong mặt phẳng $(ABCD)$ kẻ $CH \bot BD,{\rm{ (H}} \in {\rm{BD) (1)}}$. Mặt khác $A’O \bot (ABCD)$ $ \Rightarrow A’O \bot CH{\rm{ (2)}}.$
Từ $(1)$ và $(2)$ suy ra: $CH \bot (A’BD)$ $ \Rightarrow d(B’,(A’BD)) = CH.$
+ Xét tam giác vuông $BCD$ có: $\frac{1}{{C{H^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{C{D^2}}} = \frac{4}{{3{a^2}}}$ $ \Rightarrow CH = \frac{{a\sqrt 3 }}{4}.$
Vậy: $d(B’,(A’BD)) = CH = \frac{{a\sqrt 3 }}{4}.$

Ví dụ 5: Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat {ABC} = {30^0}$, $\Delta SBC$ là tam giác đều cạnh $a$, $(SBC) \bot (ABC)$. Tính $d(C,(SAB))$.

Khoảng cách từ điểm đến mặt phẳng

+ Trong mặt phẳng $(ABC)$ vẽ hình chữ nhật $ABDC$. Gọi $M, I, J$ lần lượt là trung điểm của $BC, CD$ và $AB$. Lúc đó, $CD // (SAB)$ hay: $d(C,(SAB)) = d(CD,(SAB))$ $ = d(I,(SAB)).$
+ Trong mặt phẳng $(SIJ)$ kẻ $IH \bot SJ,{\rm{ (H}} \in {\rm{SJ) (1)}}.$
Mặt khác, ta có: $\left. \begin{array}{l}
IJ \bot AB\\
SM \bot (ABC) \Rightarrow AB \bot SM
\end{array} \right\}$ $ \Rightarrow AB \bot (SIJ) \Rightarrow AB \bot IH{\rm{ (2)}}.$
Từ $(1)$ và $(2)$ suy ra: $IH \bot (SAB)$ hay $d(C,(SAB)) = IH.$
+ Xét tam giác $SIJ$ có: ${S_{SIJ}} = \frac{1}{2}IH.SJ = \frac{1}{2}SM.IJ$ $ \Rightarrow IH = \frac{{SM.IJ}}{{SJ}}.$
Với: $IJ = AC = BC.\sin {30^0} = \frac{a}{2}$, $SM = \frac{{a\sqrt 3 }}{2}$, $SJ = \sqrt {S{M^2} + M{J^2}} = \frac{{a\sqrt {13} }}{4}$.
Do đó: $IH = \frac{{SM.IJ}}{{SJ}} = \frac{{a\sqrt {39} }}{{13}}.$
Vậy $d(C,(SAB)) = \frac{{a\sqrt {39} }}{{13}}.$

Phương pháp 3
+ Nếu $MN \cap (P) = I$. Ta có: $\frac{{{\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right)}}{{{\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)}} = \frac{{MI}}{{NI}}$.
+ Tính ${\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)$ và $\frac{{MI}}{{NI}}$.
+ ${\rm{d}}\left( {{\rm{M}},\left( {\rm{P}} \right)} \right) = \frac{{MI}}{{NI}}.{\rm{d}}\left( {N,\left( {\rm{P}} \right)} \right)$.

Chú ý: Điểm $N$ ở đây ta phải chọn sao cho tìm khoảng cách từ $N$ đến mặt phẳng $(P)$ dễ hơn tìm khoảng cách từ $M$ đến mặt phẳng $(P).$

Khoảng cách từ điểm đến mặt phẳng

Ví dụ 6: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $D$, $AB = AD = a$, $CD = 2a$, $SD \bot (ABCD)$, $SD = a.$
a) Tính $d(D,(SBC)).$
b) Tính $d(A,(SBC)).$

Khoảng cách từ điểm đến mặt phẳng

Gọi $M$ là trung điểm của $CD$, $E$ là giao điểm của hai đường thẳng $AD$ và $BC.$
a) Trong mặt phẳng $(SBD)$ kẻ $DH \bot SB,{\rm{ (H}} \in {\rm{SB) (1)}}.$
+ Vì $BM = AD = \frac{1}{2}CD \Rightarrow $ Tam giác $BCD$ vuông tại $B$ hay $BC \bot BD{\rm{ (*)}}$. Mặt khác, vì $SD \bot (ABCD) \Rightarrow SD \bot BC{\rm{ (**)}}.$
Từ $(*)$ và $(**)$ ta có:
$BC \bot (SBD) \Rightarrow BC \bot DH{\rm{ (2)}}.$
Từ $(1)$ và $(2)$ suy ra: $DH \bot (SBC)$ hay $d(D,(SBC)) = DH.$
+ Xét tam giác vuông $SBD$ có: $\frac{1}{{D{H^2}}} = \frac{1}{{S{D^2}}} + \frac{1}{{B{D^2}}} = \frac{3}{{2{a^2}}}$ $ \Rightarrow DH = \frac{{2a\sqrt 3 }}{3}.$
Vậy $d(D,(SBC)) = \frac{{2a\sqrt 3 }}{3}.$
b) Ta có: $\frac{{d(A,(SBC))}}{{d(D,(SBC))}} = \frac{{AE}}{{DE}} = \frac{{AB}}{{CD}} = \frac{1}{2}$ $ \Rightarrow d(A,(SBC)) = \frac{1}{2}d(d,(SBC))$ $ = \frac{{a\sqrt 3 }}{3}.$
Vậy $d(A,(SBC)) = \frac{{a\sqrt 3 }}{3}.$

Ví dụ 7: Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $B$, $BA = 3a$, $BC = 4a$, $(SBC) \bot (ABC)$, $SB = 2a\sqrt 3 ,\widehat {SBC} = {30^0}$. Tính $d(B,(SAC))$.

Khoảng cách từ điểm đến mặt phẳng

+ Trong mặt phẳng $(SBC)$ kẻ $SM \bot BC{\rm{ (M}} \in {\rm{BC)}}$; trong mặt phẳng $(ABC)$ kẻ $MN \bot AC{\rm{ (N}} \in A{\rm{C)}}$; trong mặt phẳng $(SMN)$ kẻ $MH \bot SN{\rm{ (N}} \in SN{\rm{)}}$. Suy ra, $MH \bot (SAC)$ $ \Rightarrow d(M,(SAC)) = MH.$
+ Ta có: $SM = SB.\sin {30^0} = a\sqrt 3 .$
$BM = SB.\cos {30^0} = 3a$ $ \Rightarrow CM = a.$
$MN = \frac{{AB.CM}}{{AC}} = \frac{{3a}}{5}$. Xét tam giác vuông $SMN$ có: $\frac{1}{{M{H^2}}} = \frac{1}{{S{M^2}}} + \frac{1}{{M{N^2}}} = \frac{{28}}{{9{a^2}}}$ $ \Rightarrow MH = \frac{{3a}}{{\sqrt {28} }}$ $ \Rightarrow d(M,(SAC)) = \frac{{3a}}{{\sqrt {28} }}.$
+ Mặt khác, ta có:
$\frac{{d(B,(SAC))}}{{d(M,(SAC))}} = \frac{{BC}}{{MC}} = 4$ $ \Rightarrow d(B,(SAC))$ $ = 4.d(M,(SAC)) = \frac{{6a}}{{\sqrt 7 }}.$
Vậy $d(B,(SAC)) = \frac{{6a}}{{\sqrt 7 }}.$

Khoảng cách từ điểm đến mặt phẳng
5 (100%) 1 vote

BÌNH LUẬN

Please enter your comment!
Please enter your name here