Ước số là gì – Bội số là gì?

Ước số là gì- Bội số là gì? Bài tập về ước chung lớn nhất và bội chung nhỏ nhất đưa ra một số phương pháp giải bài toán về tìm ước chung lớn nhất và bội chung nhỏ nhất.
Ước số là gì - Bội số là gì?

Ước số là gì?

Số nguyên dương b lớn nhất là ước của cả hai số nguyên a, b được gọi là ước số chung lớn nhất (ƯCLN) của a và b. Trong trường hợp cả hai số nguyên a và b đều bằng 0 thì chúng không có ƯCLN vì khi đó mọi số tự nhiên khác không đều là ước chung của a và b.

Nói theo cách khác uớc số là một số tự nhiên khi một số tự nhiên khác chia với nó sẽ được chia hết.

Mô tả rõ hơn thì khi một số tự nhiên A được gọi là ước số của số tự nhiên B nếu B chia hết cho A.

Ví dụ: 6 chia hết được cho [1,2,3,6], thì [1,2,3,6] được gọi là ước số của 6.

Ước chung lớn nhất là gì?

Ước số chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp ước chung.

Cách tìm ước chung lớn nhất (ƯCLN)

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là UCLN cần tìm.

Chú ý:

  • Hai số nguyên tố cùng nhau khi và chỉ khi ước chung lớn nhất của hai số bằng 1.
  • Cách tìm Ước chung thông qua tìm UCLN.

Bội số là gì?

Bội số của A là các số chia hết cho A

Bối số nhỏ nhất của A là số nhỏ nhất chia hết cho A

Ví dụ: bội số của 3 là 3, 6, 9, 12, 15 …

Bội số nhỏ nhất của 3 là chính nó

Bội số chung nhỏ nhất là gì?

Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp bội chung.

Cách tìm bội số chung nhỏ nhất

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.

Chú ý:

  • Nếu hai số a, b là hai số nguyên tố cùng nhau thì BCNN là tích của a.b
  • Nếu a là bội của b thì a cũng chính là BCNN của hai số a, b.

Một số dạng toán về UCLN và BCNN

Trong chương trình số học lớp 6, sau khi học các khái niệm ước chung lớn nhất (ƯCLN) và bội chung nhỏ nhất (BCNN), các bạn sẽ gặp dạng toán tìm hai số nguyên dương khi biết một số yếu tố trong đó có các dữ kiện về ƯCLN và BCNN.

Phương pháp chung để giải:

1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với các yếu tố đã cho để tìm hai số.

2/ Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là: ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này không khó

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md; b = nd với m, n thuộc Z+; (m, n) = 1 (*)

Từ (*) => ab = mnd2; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Chúng ta hãy xét một số ví dụ minh họa.

Bài toán 1: Tìm hai số nguyên dương a, b biết [a, b] = 240 và (a, b) = 16.

Lời giải: Do vai trò của a, b là như nhau, không mất tính tổng quát, giả sử a ≤ b.

Từ (*), do (a, b) = 16 nên a = 16m; b = 16n (m ≤ n do a ≤ b) với m, n thuộc Z+; (m, n) = 1.

Theo định nghĩa BCNN:

[a, b] = mnd = mn.16 = 240 => mn = 15

=> m = 1, n = 15 hoặc m = 3, n = 5 => a = 16, b = 240 hoặc a = 48, b = 80.

Chú ý: Ta có thể áp dụng công thức (**) để giải bài toán này: ab = (a, b).[a, b] => mn.162 = 240.16 suyy ra mn = 15.

Bài toán 2: Tìm hai số nguyên dương a, b biết ab = 216 và (a, b) = 6.

Lời giải: Lập luận như bài 1, giả sử a ≤ b.

Do (a, b) = 6 => a = 6m; b = 6n với m, n thuộc Z+; (m, n) = 1; m ≤ n.

Vì vậy: ab = 6m.6n = 36mn => ab = 216 tương đương mn = 6 tương đương m = 1, n = 6 hoặc m = 2, n = 3 tương đương với a = 6, b = 36 hoặc là a = 12, b = 18.

Bài toán 3: Tìm hai số nguyên dương a, b biết ab = 180, [a, b] = 60.

Lời giải:

Từ (**) => (a, b) = ab/[a, b] = 180/60 = 3.

Tìm được (a, b) = 3, bài toán được đưa về dạng bài toán 2.

Kết quả: a = 3, b = 60 hoặc a = 12, b = 15.

Chú ý: Ta có thể tính (a, b) một cách trực tiếp từ định nghĩa ƯCLN, BCNN: Theo (*) ta có ab = mnd2 = 180; [a, b] = mnd = 60 => d = (a, b) = 3.

Số nguyên tố là gì?

Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

Các số nguyên tố :

2, 3, 5, 7

11, 13, 17, 19,

23, 29,

31, 37

41, 43, 47

53, 59

61, 67

71, 73, 79

83, 89

97

101 …

Hợp số là gì?

Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ước.

Lưu ý :

Số 0 và 1 không là số nguyên tố và cũng không là Hợp số.
Sotayhoctap chúc các bạn học tốt!

5/5 - (1 bình chọn)
Mình là Nguyễn Mỹ Lệ - là tác giả các bài viết trong chuyên mục sổ tay Toán học - Vật lý - Hóa học. Mong rằng các bài viết của mình được các bạn đón nhận nồng nhiệt.

Related Posts

Lược đồ Hoocne (Sơ đồ Hoocne)

Lược đồ Hoocne (Sơ đồ Hoocne) trong cách chia đa thức

Bài viết lược đồ Hoocne (Sơ đồ Hoocne) trong cách chia đa thức bao gồm: Cách chia đa thức cho đa thức bằng lược đồ Hoocne, bài…

Chu vi hình chữ nhật cơ sở của elip

Chu vi hình chữ nhật cơ sở của elip

Chu vi hình chữ nhật cơ sở của elip và công thức tính chu vi hình chữ nhật cơ sở của elip. Vẽ qua A1&A2 hai đường…

Công thức tính thể tích hình trụ

Công thức tính thể tích hình trụ – Ví dụ cách tính thể tích hình trụ

Thể tích hình trụ là gì? Công thức tính thể tích hình trụ, cách tính thể tích hình trụ… Công thức tính thể tích hình trụ Thể…

Thể tích hình chóp cụt

Thể tích hình chóp cụt – Công thức và ví dụ

Thể tích hình chóp cụt là gì? Công thức tính thể tích hình chóp cụt, cách tính thể tích hình chóp cụt… Công thức tính thể tích…

Những hằng đẳng thức đáng nhớ

Những hằng đẳng thức đáng nhớ, hằng đẳng thức mở rộng và dạng toán áp dụng

Bài viết những hằng đẳng thức đáng nhớ bao gồm: 7 hằng đẳng thức đáng nhớ, các hằng đẳng thức mở rộng, các hằng đẳng thức tổng…

Công thức tính phương sai và độ lệch chuẩn

Công thức tính phương sai và độ lệch chuẩn

Phương sai là gì? Công thức tính phương sai, cách tính phương sai và độ lệch chuẩn… Công thức tính phương sai Phương sai của một bảng…