Tổng hợp các quy tắc tính đạo hàm đầy đủ và ví dụ

Bài viết các quy tắc tính đạo hàm sẽ giới thiệu đến các em công thức tính đạo hàm của các hàm số thường gặp và hàm hợp của chúng, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em hình thành và rèn luyện kĩ năng tính đạo hàm.
Các quy tắc tính đạo hàm

Quy tắc tính đạo hàm

Đạo hàm của một số hàm số thường gặp

Định lý 1: Hàm số y = {x^n}(n \in \mathbb{N},n > 1) có đạo hàm với mọi x \in\mathbb{R} và: {\left( {{x^n}} \right)'} = n{x^{n - 1}}.

Nhận xét:

(c)’=0 (với c là hằng số).
(x)’=1.
Định lý 2: Hàm số y= \sqrt x có đạo hàm với mọi x dương và: \left( {\sqrt x } \right)' = \frac{1}{{2\sqrt x }}.

Đạo hàm của tổng, hiệu, tích, thương

Định lý 3: Giả sử u = u\left( x \right) và v = v\left( x \right) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:

{\left( {u + v} \right)'} = {u'} + {v'}
{\left( {u - v} \right)'} = {u'} - {v'}
{\left( {u.v} \right)'} = {u'}.v + u.{v'}
\left ( \frac{u}{v} \right )'=\frac{u'v-uv'}{v^2},(v(x) \ne 0)
Mở rộng:

({u_1} + {u_2} + ... + {u_n})' = {u_1}' + {u_2}' + ... + {u_n}'.
Hệ quả 1: Nếu k là một hằng số thì: (ku)'=ku'.

Hệ quả 2{\left( {\frac{1}{v}} \right)'} = - \frac{{ - v'}}{{{v^2}}} , (v(x)\ne 0)

(u.v.{\rm{w}})' = u'.v.{\rm{w}} + u.v'.{\rm{w}} + u.v.{\rm{w}}'

Đạo hàm với hàm hợp

Định lý: Cho hàm số y=f(u) với u=u(x) thì ta có: y'_u=y'_u.u'_x.

Hệ quả:

({u^n}) = n.{u^{n - 1}}.u',n \in \mathbb{N}^*.
\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}.

Download bảng công thức đạo hàm đầy đủ pdf

Các bạn có thể tải bảng công thức đạo hàm đầy đủ pdf dưới đây để in ra tiện cho việc tra cứu và học tập.

Ví dụ cho các quy tắc tính đạo hàm

Ví dụ 1:
a) Cho hàm số f(x)=x6. Tính f'(x) và f'(1).

b) Tính đạo hàm của hàm số y=\sqrt x tại x=9.

Hướng dẫn giải:
a) Ta có: f'(x) = 6{x^5},\forall x \in \mathbb{R}

Vậy: f'(1) = 6.

b) Ta có: f'(x) = \frac{1}{{2\sqrt x }}

Tại x=9 ta có: f'(9) = \frac{1}{{2\sqrt 9 }} = \frac{1}{6}.

Ví dụ 2:
Tính đạo hàm của các hàm số sau:

a) y = \frac{1}{3}{x^3} - 2{x^2} + 3x.

b) y=(x^2+1)(3-2x^2).

c) y=(x^2+3)^5.

Hướng dẫn giải:
a) y' = \left( {\frac{1}{3}{x^3} - 2{x^2} + 3x} \right)' = {x^2} - 4x + 3.

b) y' = \left[ {({x^2} + 1)(3 - 2{x^2})} \right]' = ({x^2} + 1)'(3 - 2{x^2}) + ({x^2} + 1)(3 - 2{x^2})'

= 2x(3 - 2{x^2}) - 4x({x^2} + 1) = - 8{x^3} + 2x.

c) y' = \left[ {{{({x^2} + 3)}^5}} \right]' = 5{({x^2} + 3)^4}({x^2} + 3)' = 10x{({x^2} + 3)^4}.

Ví dụ 3:
Tính đạo hàm của các hàm số sau:

a) y = \frac{1}{4}x + \frac{1}{x}.

b) y = \frac{{2x + 1}}{{x + 1}}.

c) y = \frac{{ - {x^2} + 2x + 3}}{{{x^3} - 2}}.

Hướng dẫn giải:
a) y' = \left( {\frac{1}{4}x + \frac{1}{x}} \right)' = \left( {\frac{1}{4}x} \right)' + \left( {\frac{1}{x}} \right)' = \frac{1}{4} - \frac{1}{{{x^2}}} = \frac{{{x^2} - 4}}{{4{x^2}}}.

b) y' = \left( {\frac{{2x + 1}}{{x + 1}}} \right)' = \frac{{(2x + 1)'(x + 1) - (2x + 1)(x + 1)'}}{{{{(x + 1)}^2}}} = \frac{1}{{{{(x + 1)}^2}}}.

c) y' = \left( {\frac{{ - {x^2} + 2x + 3}}{{{x^3} - 2}}} \right)' = \frac{{( - {x^2} + 2x + 3)'({x^3} - 2) - ( - {x^2} + 2x + 3)({x^3} - 2)'}}{{{{({x^3} - 2)}^2}}}

= \frac{{\left( { - 2x + 2} \right)({x^3} - 2) - 3{x^2}( - {x^2} + 2x + 3)}}{{{{({x^3} - 2)}^2}}} = \frac{{{x^4} - 4{x^3} - 9{x^2} + 4x - 4}}{{{{({x^3} - 2)}^2}}}.

Ví dụ 4:
Tính đạo hàm của các hàm số sau:

a) y = \frac{2}{x} + 5\sqrt x .

b) y = (x - 2)\sqrt {{x^2} + 1}

c) y = \frac{x}{{\sqrt {{a^2} - {x^2}} }} với a là hằng số.

Hướng dẫn giải:
a) y' = \left( {\frac{2}{x} + 5\sqrt x } \right)' = \left( {\frac{2}{x}} \right)' + \left( {5\sqrt x } \right)' = - \frac{2}{{{x^2}}} + \frac{5}{{2\sqrt x }} = \frac{{5x\sqrt x - 4}}{{2{x^2}}}.

b) y = \left[ {(x - 2)\sqrt {{x^2} + 1} } \right]' = (x - 2)'\sqrt {{x^2} + 1} + (x - 2)\left( {\sqrt {{x^2} + 1} } \right)'

= \sqrt {{x^2} + 1} + \left( {x - 2} \right)\frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} = \sqrt {{x^2} + 1} + \frac{{x(x - 2)}}{{\sqrt {{x^2} + 1} }} = \frac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}.

c) y' = \left( {\frac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)' = \frac{{\left( x \right)'\sqrt {{a^2} - {x^2}} - x\left( {\sqrt {{a^2} - {x^2}} } \right)'}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}}

= \frac{{\sqrt {{a^2} - {x^2}} - x.\frac{{\left( {{a^2} - {x^2}} \right)'}}{{2\sqrt {{a^2} - {x^2}} }}}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}} = \frac{{\sqrt {{a^2} - {x^2}} + \frac{{{x^2}}}{{\sqrt {{a^2} - {x^2}} }}}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}}

= \frac{{{a^2}}}{{\left( {{a^2} - {x^2}} \right)\sqrt {{a^2} - {x^2}} }}.

4.5/5 - (2 bình chọn)
Mình là Nguyễn Mỹ Lệ - là tác giả các bài viết trong chuyên mục sổ tay Toán học - Vật lý - Hóa học. Mong rằng các bài viết của mình được các bạn đón nhận nồng nhiệt.

Related Posts

Chuyên đề số chính phương

Chuyên đề số chính phương

Chuyên đề số chính phương: số chính phương là số gì, định nghĩa số chính phương, tính chất số chính phương, một số dạng bài tập về…

Lược đồ Hoocne (Sơ đồ Hoocne)

Lược đồ Hoocne (Sơ đồ Hoocne) trong cách chia đa thức

Bài viết lược đồ Hoocne (Sơ đồ Hoocne) trong cách chia đa thức bao gồm: Cách chia đa thức cho đa thức bằng lược đồ Hoocne, bài…

Các hàng đẳng thức

Nhị thức Newton, cách khai triển và một số dạng bài tập áp dụng

Bài viết nhị thức Newton bao gồm: nhị thức Newton cơ bản, khai triển nhị thức Newton, tìm hệ số trong khai triển nhị thức Newton, nhị…

Những hằng đẳng thức đáng nhớ

Những hằng đẳng thức đáng nhớ, hằng đẳng thức mở rộng và dạng toán áp dụng

Bài viết những hằng đẳng thức đáng nhớ bao gồm: 7 hằng đẳng thức đáng nhớ, các hằng đẳng thức mở rộng, các hằng đẳng thức tổng…

Hàm số liên tục và bài toán xét tính liên tục của hàm số

Bài viết hàm số liên tục bao gồm: định lý và định nghĩa về hàm số liên tục, xét tính liên tục của hàm số, bài tập…

Cách tìm tập xác định của hàm số mũ và hàm số logarit

Bài viết cách tìm tập xác định của hàm số mũ và hàm số logarit, đây là dạng toán cơ bản trong chương trình Giải tích 12….